
	

		COMPUTER SCIENCE
	

	

	

Year 13

What are the aims and intentions of this curriculum?
	
The	aims	of	the	year	13	curriculum	map	are	to	enable	learners	to	develop:		

• An	understanding	and	ability	to	apply	the	fundamental	principles	and	concepts	of	computer	science,	including:	abstraction,	decomposition,	logic,	algorithms	
and	data	representation	

• The	ability	to	analyse	problems	in	computational	terms	through	practical	experience	of	solving	such	problems,	including	writing	programs	to	do	so.	
• The	capacity	to	think	creatively,	innovatively,	analytically,	logically	and	critically	
• The	capacity	to	see	relationships	between	different	aspects	of	computer	science	
• Mathematical	skills.	

Term Topics Knowledge and key terms Skills developed Assessment
Autumn	1	 1.1	The	characteristics	of	

contemporary	
processors,	input,	output	
and	storage	devices	
1.1.1	Structure	and	
function	of	the	processor	
	
	
	
	
	
	
	
	
	
1.1.2	Types	of	processor	
	
	
	
	
	
	
	
1.1.3	Input,	output	and	
storage	

(a)	The	Arithmetic	and	Logic	Unit;	ALU,	Control	Unit	
and	Registers	(Program	Counter;	PC,	Accumulator;	
ACC,	Memory	Address	Register;	MAR,	Memory	Data	
Register;	MDR,	Current	Instruction	Register;	CIR).	
Buses:	data,	address	and	control:	how	this	relates	to	
assembly	language	programs.		
(b)	The	fetch-decode-execute	cycle,	including	its	
effect	on	registers.	
(c)	The	factors	affecting	the	performance	of	the	
CPU;	clock	speed,	number	of	cores,	cache.		
(d)	The	use	of	pipelining	in	a	processor	to	improve	
efficiency.	
(d)	Von	Neumann,	Harvard	and	contemporary	
processor	architecture.	
	
(a)	The	differences	between	and	uses	of	CISC	and	
RISC	processors.		
(b)	GPUs	and	their	uses	(including	those	not	related	
to	graphics).	
(c)	Multicore	and	Parallel	systems.	
	
	
	
a)	How	different	input,	output	and	storage	devices	
can	be	applied	to	the	solution	of	different	

• Know	how	parts	of	the	CPU	interact	and	
function	to	process	instructions	and	‘compute’.		

• Evaluate	the	development	of	computer	
technology	and	the	effects	it	has	had.	

• Understand	and	explain	the	Fetch-Execute	
cycle.	

• Compare	several	PROCESSOR	specifications	
and	professional	reviews	of	the	performance		
	of	the	CPU.	

• Discuss	the	use	of	pipelining	in	a	processor.	
• Compare	the	Von	Neumann	and	Harvard	CPU	

architecture.	
	
	

	
• Compare	and	contrast	a	range	of	CPU	

benchmarks	or	look	for	a	specific	model.	
	
• Analyse	the	suitability	of	the	GPU	for	a	range	of	

tasks	other	than	playing	video	games.	
• Tell	the	difference	between	serial	and	parallel	

processing	of	instructions.	
	
• Revise	key	terms	and	learn	definitions	of	input	

and	output	devices.	

• Individual	
presentations	

• Group	
Presentations	

• Case	Studies	
• Reviews	
• End	of	topic	quiz	
• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
• Research	
• Quizlet	
	
	
	
	
	
• Individual	

	
	
	
	
	
	
	
	
	
	
	
	
1.2	Software	and	
software	development	
	
1.2.1	Systems	
Software	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
1.2.4	Types	of	
Programming	Language	
	
	
	
	
	
	

problems.	
(b)	The	uses	of	magnetic,	flash	and	optical	storage	
devices.		
(c)	RAM	and	ROM.		
(d)	Virtual	storage.	

	
	
	
	
	
	
	
Types	of	software	and	the	different	methodologies	
used	to	develop	software	
	
(a)	The	need	for,	function	and	purpose	of	operating	
systems.		
(b)	Memory	Management	(paging,	segmentation	and	
virtual	memory).		
(c)	Interrupts,	the	role	of	interrupts	and	Interrupt	
Service	Routines	(ISR),	role	within	the	Fetch-Decode-
Execute	Cycle.		
(d)	Scheduling:	round	robin,	first	come	first	served,	
multi-level	feedback	queues,	shortest	job	first	and	
shortest	remaining	time.		
(e)	Distributed,	embedded,	multi-tasking,	multi-user	
and	real	time	operating	systems.		
(f)	BIOS.		
(g)	Device	drivers.		
(h)	Virtual	machines,	any	instance	where	software	is	
used	to	take	on	the	function	of	a	machine,	including	
executing	intermediate	code	or	running	an	operating	
system	within	another.	
	
(a)	Need	for	and	characteristics	of	a	variety	of	
programming	paradigms.		
(b)	Procedural	languages.		
(c)	Assembly	language	(including	following	and	writing	
simple	programs	with	the	Little	Man	Computer	
instruction	set).	See	appendix	5d.		
(d)	Modes	of	addressing	memory	(immediate,	direct,	
indirect	and	indexed).		

• Discuss	optical	and	magnetic	storage	
properties	

• Justify	where	each	type	of	storage	is	used	and	
its	suitability.	

• Discuss	the	concept	of:	a	slow	computer	
requires	more	RAM,	so	why	not	just	download	
some	more?	Learners	can	discuss	the	issues	or	
reality	of	this	is	RAM	downloadable?	Would	it	
work?	

• Compare	the	advantages	and	disadvantages	of	
virtual	storage	

	
	
	

• Understanding	the	need	for	and	function	of	

operating	systems.	
• Know	that	the	OS	handles	interrupts,	

scheduling,	resource	management,	managing	
hardware	to	allocate	processors,	memories	and	
I/O	devices	among	competing	processes.	

• Understand	the	term	'embedded	system'	and	
explain	how	an	embedded	system	differs	from	a	
Distributed	system.	

• Know	the	instance	where	software	is	used	to	
take	on	the	function	of	a	machine	including	
executing	intermediate	code	or	running	an	
operating	system	within	another.	

• Discuss	why	certain	operating	systems	are	
used.	

• Justify	reasons	for	using	virtual	machines.	
	
	
	
• Give	a	comparison	of	various	programming	

languages	after	actual	use.	
• Use,	understand	and	know	how	the	following	

statement	types	can	be	combined	in	programs:	
ü variable	declaration	
ü constant	declaration	
ü assignment	
ü string	handling	

presentations	
• Group	

Presentations	
• Case	Studies	
• Reviews	
• End	of	topic	quiz	
• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
• Demonstations	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
• Individual	

presentations	
• Group	

Presentations	
• Case	Studies	
• End	of	topic	quiz	
• End	of	term	test	

	
	
	
	
	
1.3	Exchanging	data	
	

	
1.3.1	Compression,	
Encryption	and	
Hashing	

	
	
1.4.1	Data	Types	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
1.4.2	Data	Structures	
	
	
	
	
	
	
	
	

(e)	Object-oriented	languages	(see	appendix	5d	for	
pseudocode	style)	with	an	understanding	of	classes,	
objects,	methods,	attributes,	inheritance,	
encapsulation	and	polymorphism.	
	
How	data	is	exchanged	between	different	systems	
	
(a)	Lossy	vs	Lossless	compression.		
(b)	Run	length	encoding	and	dictionary	coding	for	
lossless	compression.		
(c)	Symmetric	and	asymmetric	encryption.		
(d)	Different	uses	of	hashing.	
	
(a)	Primitive	data	types,	integer,	real/floating	point,	
character,	string	and	Boolean.		
(b)	Represent	positive	integers	in	binary.		
(c)	Use	of	sign	and	magnitude	and	two’s	complement	
to	represent	negative	numbers	in	binary.	
(d)	Addition	and	subtraction	of	binary	integers.		
(e)	Represent	positive	integers	in	hexadecimal.		
(f)	Convert	positive	integers	between	binary	
hexadecimal	and	denary.	
(g)	Representation	and	normalisation	of	floating	point	
numbers	in	binary.		
(h)	Floating	point	arithmetic,	positive	and	negative	
numbers,	addition	and	subtraction.		
(i)	Bitwise	manipulation	and	masks:	shifts,	combining	
with	AND,	OR,	and	XOR.	
	(j)	How	character	sets	(ASCII	and	UNICODE)	are	used	
to	represent	text.	
	

	
	
a)	Arrays	(of	up	to	3	dimensions),	records,	lists,	
tuples.		
(b)	The	following	structures	to	store	data:	linked-list,	
graph	(directed	and	undirected),	stack,	queue,	tree,	
binary	search	tree,	hash	table.		
(c)	How	to	create,	traverse,	add	data	to	and	remove	
data	from	the	data	structures	mentioned	above.	(NB	
this	can	be	either	using	arrays	and	procedural	
programming	or	an	object-oriented	approach).	

ü file	handling	
ü subroutine	(procedure/function)	

• Identify	and	use	mnemonics	from	LMC	
• Write	simple	programs	using	Little	Man	

Computing	
	
	
• Demonstrate	the	difference	between	lossy	and	

lossless	audio	compression.	
• Investigate	the	difference	between	the	HD	and	

SD	quality	on	YouTube.	
• Use	hashing	principles	in	python.	
	
• Understand	the	concept	of	a	data	type.	
• Create	their	own	examples	of	the	listed	data	

types.	
• Know	how	to:	

ü represent	negative	and	positive	integers	in	
two’s	complement	

ü perform	subtraction	using	two’s	
complement	

• Be	able	to	convert	between	unsigned	binary	
and	decimal	and	vice	versa.	

• Be	able	to	add	and	subtract	binary	as	well	as	to	
convert	between	decimal,	binary	and	
hexadecimal	number	bases.	

• Manipulate	binary	by	using	bitwise	and	
shifting.	

• Describe	ASCII	and	Unicode	coding	systems	for	
coding	character	data	and	explain	why	Unicode	
was	introduced.	

	
• Use	arrays	in	the	design	of	solutions	to	simple	

problems.	
	
• Use	stocks,	queues,	tree	and	hash	table	to	

structure	data.	
	
	
	
	

• Microsoft	Teams	
collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
	

Autumn	2	 1.2.2	Applications	
generation	
	
	
	
	
	
	
	
	
	
	
1.2.3	Software	
Development	
	
	
	
	
	
1.3.1	Databases	
	
	
	
	
	

	
	
	
	
	
	
	
1.3.2	Networks	
	
	
	
	
	
	
	
	
	

(a)	The	nature	of	applications,	justifying	suitable	
applications	for	a	specific	purpose.		
(b)	Utilities.		
(c)	Open	source	vs	closed	source.		
(d)	Translators:	Interpreters,	compilers	and	
assemblers.	
(e)	Stages	of	compilation	(lexical	analysis,	syntax	
analysis,	code	generation	and	optimisation).		
(f)	Linkers	and	loaders	and	use	of	libraries.	
	
	
	
(a)	Understand	the	waterfall	lifecycle,	agile	
methodologies,	extreme	programming,	the	spiral	
model	and	rapid	application	development.		
(b)	The	relative	merits	and	drawbacks	of	different	
methodologies	and	when	they	might	be	used.		
(c)	Writing	and	following	algorithms.		
	
How	data	is	exchanged	between	different	systems	
(a)	Relational	database,	flat	file,	primary	key,	foreign	
key,	secondary	key,	entity	relationship	modelling.	See	
appendix	5f.		
(b)	Methods	of	capturing,	selecting,	managing	and	
exchanging	data.	
(c)	Normalisation	to	3NF.		
(d)	SQL	–	Interpret	and	modify.	See	appendix	5d.		
(e)	Referential	integrity.		
(f)	Transaction	processing,	ACID	(Atomicity,	
Consistency,	Isolation,	Durability),	record	locking	and	
redundancy.	
	
(a)	Characteristics	of	networks	and	the	importance	of	
protocols	and	standards.		
(b)	Internet	structure:		

ü The	TCP/IP	stack.		
ü DNS	
ü Protocol	layering.		
ü LANs	and	WANs.	
ü Packet	and	circuit	switching.		

(c)	Network	security	and	threats,	use	of	firewalls,	
proxies	and	encryption.		

• Understand	the	functions	of	the	following	
software:	
ü open	source	
ü closed	source	
ü utility	programs	
ü libraries	
ü translators	(compiler,	assembler,	

interpreter).	
• Identify	and	explain	each	state	of	compilation.	
• Explain	linkers	and	loaders	and	how	libraries	

are	used.	
	
• Apply	the	structure	of	the	waterfall	lifecycle	in	

software	development.	
• Discuss	relevant	software	development	

methodologies	including	their	advantages	and	
disadvantages.	

	
	
	
• Distinguish	between	database	keys.	
	
• Draw	entity	relationship	diagrams	to	express	a	

given	situation.	
	

• Describe	different	types	of	normalization.	
	

• Write	SQL	codes	
	

• Know	how	transactions	are	completed	using	
ACID.	

	
• Appreciate	the	importance	of	protocols	and	

standards.	
	
• Describe	the	4	layer	TCP/IP	model:	

ü application	layer	
ü transport	layer	
ü internet	layer	
ü link	layer.	

• Evaluate	different	network	security	measures.	

• Group	
Presentations	

• Case	Studies	
• End	of	topic	quiz	
• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
• Demonstrations	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
• Individual	

presentations	
• Group	

	
	
	
	
	
	
	
1.3.4	Web	Technologies	
	
	
	
	
1.4.3	Boolean	Algebra	
	
	
	
	
	
	
	
	
	
	
	
	
	
2.1	Elements	of	
computational	thinking	
	
2.1.1	Thinking	abstractly	
	
	
	
	
2.1.2	Thinking	ahead	
	
	
	
	
	
	
2.1.3	Thinking	

(d)	Network	hardware.	
(c)	Client-server	and	peer	to	peer.	
	
	
	
	
	
(a)	HTML,	CSS	and	JavaScript.	See	appendix	5d.		
(b)	Search	engine	indexing.		
(c)	PageRank	algorithm.		
(d)	Server	and	client	side	processing.	
	
(a)	Define	problems	using	Boolean	logic.	See	appendix	
5d.		
(b)	Manipulate	Boolean	expressions,	including	the	use	
of	Karnaugh	maps	to	simplify	Boolean	expressions.	
(c)	Use	the	following	rules	to	derive	or	simplify	
statements	in	Boolean	algebra:	De	Morgan’s	Laws,	
distribution,	association,	commutation,	double	
negation.	
(d)	Use	logic	gate	diagrams	and	truth	tables.	See	
appendix	5d.	
(e)	The	logic	associated	with	D	type	flip	flops,	half	and	
full	adders.	
	
	
Understand	what	is	meant	by	computational	
thinking	
	
(a)	The	nature	of	abstraction.		
(b)	The	need	for	abstraction.	(c)	The	differences	
between	an	abstraction	and	reality.	(d)	Devise	an	
abstract	model	for	a	variety	of	situations.	
	
(a)	Identify	the	inputs	and	outputs	for	a	given	
situation.		
(b)	Determine	the	preconditions	for	devising	a	
solution	to	a	problem.		
(c)	The	nature,	benefits	and	drawbacks	of	caching.	
(d)	The	need	for	reusable	program	components.	
	
(a)	Identify	the	components	of	a	problem.		

• Identify	different	network	hardware	and	
explain	their	purpose.	

• Explain	the	following	and	describe	situations	
where	they	might	be	used:	
ü peer-to-peer	networking	
ü client-server	networking.	

	
• Be	able	to	build	webpages	with	the	

implementation	of	CSS	and	JavaScript.	
• Demonstrate	how	search	engines	work.	
• Know	how	pages	are	ranked.	
	
• Write	a	Boolean	expression	for	a	given	logic	

gate	circuit.	
• Use	Karnaugh	maps	appropriately.	
• Complete	a	truth	table	for	a	given	logic	gate	

circuit.	
• Construct	truth	tables	for	the	following	logic	

gates:	
• NOT	
• AND	
• OR	

• Know	the	logic	associated	with	D	type	flip	
flops,	half	and	full	adders.	

	
	
	
	
• Be	aware	that	before	a	problem	can	be	solved,	

it	must	be	defined,	the	requirements	of	the	
system	that	solves	the	problem	must	be	
established	

	
	
• The	capacity	to	think	creatively,	innovatively,	

analytically,	logically	and	critically	
• Know	the	impact	of	caching	in	relation	to	a	

programming	solution	or	IT	system.	
• Practical	skills	in	the	context	of	solving	a	

realistic	problem	
• Be	able	to	express	the	solution	to	a	simple	

Presentations	
• Case	Studies	
• Reviews	
• End	of	topic	quiz	
• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
• Dramatization	
	

procedurally	
	
	
	
	
	
2.1.4	Thinking	logically	
	

	
	
	
	

	
2.1.5	Thinking	
concurrently	

(b)	Identify	the	components	of	a	solution	to	a	
problem.	(c)	Determine	the	order	of	the	steps	needed	
to	solve	a	problem.		
(d)	Identify	sub-procedures	necessary	to	solve	a	
problem.	
	
(a)	Identify	the	points	in	a	solution	where	a	decision	
has	to	be	taken.		
(b)	Determine	the	logical	conditions	that	affect	the	
outcome	of	a	decision.		
(c)	Determine	how	decisions	affect	flow	through	a	
program.	
	
(a)	Determine	the	parts	of	a	problem	that	can	be	
tackled	at	the	same	time.		
(b)	Outline	the	benefits	and	trade	offs	that	might	
result	from	concurrent	processing	in	a	particular	
situation.	

problem	as	an	algorithm	using	pseudo-code,	
with	the	standard	constructs:	
ü sequence	
ü branching	
ü iteration	

	
• Create	flowcharts	to	identify	and	represent	the	

various	elements	of	a	system.	
	
	
	
	
	
• Know	how	to	get	from	a	problem	to	a	solution	

for	computational	problems.	
• Outline	the	benefits	and	trade	offs	that	might	

result	from	concurrent	processing	in	a	particular	
situation.	

Spring	1	 1.5	Legal,	moral,	ethical	
and	cultural	issues	
	
	
	
	
1.5.1	Computing	related	
legislation	
	
	
	
1.5.2	Ethical,	moral	and	
cultural	issues	
	
	
	
	
	
	
	
	
	
	

The	individual	moral,	social,	ethical	and	cultural	
opportunities	and	risks	of	digital	technology.	
Legislation	surrounding	the	use	of	computers	and	
ethical	issues	that	can	or	may	in	the	future	arise	from	
the	use	of	computers.	
	
(a)	The	Data	Protection	Act	1998.		
(b)	The	Computer	Misuse	Act	1990.		
(c)	The	Copyright	Design	and	Patents	Act	1988.		
(d)	The	Regulation	of	Investigatory	Powers	Act	2000.	
	
(a)	The	individual	moral,	social,	ethical	and	cultural	
opportunities	and	risks	of	digital	technology:		

ü Computers	in	the	workforce.	
ü Automated	decision	making.	
ü Artificial	intelligence.	
ü Environmental	effects.	
ü Censorship	and	the	Internet.	
ü Monitor	behaviour.		
ü Analyse	personal	information.		
ü Piracy	and	offensive	communications.	
ü Layout,	colour	paradigms	and	character	sets.	

	

	
	
	
	
	
	
• An	understanding	of	the	consequences	of	using	

computers	unlawfully.	
	
	
	
• Understand	the	professional,	ethical,	legal,	

security	and	social	issues	and	responsibilities	
	
• Understand	that:	

ü developments	in	computer	science	and	the	
digital	technologies	have	dramatically	
altered	the	shape	of	communications	and	
information	flows	in	societies,	enabling	
massive	transformations	in	the	capacity	to:	
o monitor	behaviour	
o amass	and	analyse	personal	

information	

• Group	
Presentations	

• Case	Studies	
• End	of	topic	quiz	
• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
	
	
	
	
	
	
• Group	

Presentations	
• Case	Studies	
• End	of	topic	quiz	

	
	
2.2	Problem	solving	and	
programming	
	
	
	
	
2.2.1	Programming	
techniques	

	
	
	
	
	
	
	
	

2.2.2	Computational	
methods	
	

	
	
	
	
	
	
	
	
	
	
	
	
2.3	Algorithms	
	
2.3.1	Algorithms	
	
	
	
	
	
	

	
	
How	computers	can	be	used	to	solve	problems	and	
programs	can	be	written	to	solve	them	(Learners	will	
benefit	from	being	able	to	program	in	a	
procedure/imperative	language	and	object	oriented	
language.)	
	
(a)	Programming	constructs:	sequence,	iteration,	
branching.		
(b)	Recursion,	how	it	can	be	used	and	compares	to	an	
iterative	approach.	
(c)	Global	and	local	variables.		
(d)	Modularity,	functions	and	procedures,	parameter	
passing	by	value	and	reference.	(e)	Use	of	an	IDE	to	
develop/debug	a	program.	
(f)	Use	of	object	oriented	techniques.	
	
(a)	Features	that	make	a	problem	solvable	by	
computational	methods.		
(b)	Problem	recognition.	(c)	Problem	decomposition.		
(d)	Use	of	divide	and	conquer.		
(e)	Use	of	abstraction.		
(f)	Learners	should	apply	their	knowledge	of:		

ü Backtracking	
ü data	mining	
ü heuristics	
ü performance	modelling	
ü pipelining	
ü visualisation	to	solve	problems.	

	
	
The	use	of	algorithms	to	describe	problems	and	
standard	algorithms	
(a)	Analysis	and	design	of	algorithms	for	a	given	
situation.		
(b)	The	suitability	of	different	algorithms	for	a	given	
task	and	data	set,	in	terms	of	execution	time	and	
space.	
(c)	Measures	and	methods	to	determine	the	
efficiency	of	different	algorithms,	Big	O	notation	
(constant,	linear,	polynomial,	exponential	and	

o distribute,	publish,	communicate	and	
disseminate	personal	information.	

	
	
	
	
	
	
• Know	that	branching	effectively	replaces	

iteration.	
	
• Develop	iterative	solutions.	

	
• Develop	recursive	solutions.	

	
	
	
	
	
	
	
• Know	how	quicksort	use	the	so-called	divide	

and	conquer	strategy	
• Define	backtracking,	data	mining,	and	

heuristics.	
• Identify	a	list	of	real-life	(non-computing)	

applications	of	backtracking.	
• Know	which	computational	problems	can	assist	

through	visualization.	
• Plotting	responses	for	visual	correlation.		
	
	
	
	
• Be	able	to	convert	an	algorithm	from	pseudo-

code	into	high	level	language	program	code.	
	
• Be	able	to	develop	solutions	to	simple	logic	

problems.	
	
• Know	when	and	how	to	use	different	algorithm	

• End	of	term	test	
• Microsoft	Teams	

collaborative	
activities.	

• Home	work	
• Class	Discussions	
• Topic	Worksheets	
• Past	Paper	question	

sheets	
• Programming	

project	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
Non	exam	assessment	
PROGRAMMING	
PROJECT	
	
3.1.	Analysis	of	the	
problem	(10	marks)	
	

3.1.1	Problem	
identification	
	
	
3.1.2	Stakeholders	
	
	
	
	
	
	
3.1.3	Research	the	
problem	
	
	
	
	
3.1.4	Specify	the	
proposed	solution	
	
	
	

logarithmic	complexity).	
(d)	Comparison	of	the	complexity	of	algorithms.	
(e)	Algorithms	for	the	main	data	structures,	(stacks,	
queues,	trees,	linked	lists,	depth-first	(post-order)	and	
breadth-first	traversal	of	trees).	
(f)	Standard	algorithms	(bubble	sort,	insertion	sort,	
merge	sort,	quick	sort,	Dijkstra’s	shortest	path	
algorithm,	A*	algorithm,	binary	search	and	linear	
search).		
	
	
	
	
	
	
	
	
	
	
(a)	Describe	and	justify	the	features	that	make	the	
problem	solvable	by	computational	methods.		
(b)	Explain	why	the	problem	is	amenable	to	a	
computational	approach.	
	
(a)	Identify	and	describe	those	who	will	have	an	
interest	in	the	solution	explaining	how	the	solution	is	
appropriate	to	their	needs	(this	may	be	named	
individuals,	groups	or	persona	that	describes	the	
target	end	user).	
	
(a)	Research	the	problem	and	solutions	to	similar	
problems	to	identify	and	justify	suitable	approaches	to	
a	solution.	(b)	Describe	the	essential	features	of	a	
computational	solution	explaining	these	choices.		
(c)	Explain	the	limitations	of	the	proposed	solution.	
	
(a)	Specify	and	justify	the	solution	requirements	
including	hardware	and	software	configuration	(if	
appropriate).	(b)	Identify	and	justify	measurable	
success	criteria	for	the	proposed	solution.	
	
	

sorting	and	searching	methods.	
	

• Comparing	suitability	of	different	algorithms	
for	a	given	task	and	data	set.	

	
• Know	and	use	different	measures	and	methods	

to	determine	the	efficiency	of	different	
algorithms	

	
• Explain	and	use	Dijkstra’s	shortest	path	

algorithm.	
	
	
	
	
	
	
	
	
	
• Choose	a	problem	from	the	list	given	by	OCR	

and	analyse	this	problem	to	determine;	the	
stakeholders,	the	need	for	a	solution	and	the	
necessary	requirements	including	hardware	
software.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
• Seminars	
• Programming	

project	
• Past	programming	

project	analysis	and	
comparison	

	
	
	
	
• Individual	

presentation		
• Case	Studies	

3.2	Design	of	the	solution	
(15	marks)	

3.2.1	Decompose	the	
problem	
	
	
3.2.2	Describe	the	
solution	
	
	
	
	
	
	
3.2.3	Describe	the	
approach	to	testing	

	
(a)	Break	down	the	problem	into	smaller	parts	
suitable	for	computational	solutions	justifying	any	
decisions	made.	
	
(a)	Explain	and	justify	the	structure	of	the	solution.	(b)	
Describe	the	parts	of	the	solution	using	algorithms	
justifying	how	these	algorithms	form	a	complete	
solution	to	the	problem.	(c)	Describe	usability	features	
to	be	included	in	the	solution.		
(d)	Identify	key	variables	/	data	structures	/	classes	
justifying	choices	and	any	necessary	validation.	
	
(a)	Identify	the	test	data	to	be	used	during	the	
iterative	development	and	post	development	phases	
and	justify	the	choice	of	this	test	data.	

	
	
• Use	appropriate	software	to	design	the	user	

interface	for	the	chosen	project.	
	
	
	
	
	
	
	
• Students	should	be	able	to	design	and	apply	

test	data,	normal,	boundary	and	erroneous	to	
the	testing	of	programs	so	that	they	are	
familiar	with	these	test	data	types	and	the	
purpose	of	testing.	

• Programming	
Project		

• Class	Discussions	
• Research	
• Past	project	

samples	
	
	
	

Spring	2	 3.4	Evaluation	(20	marks)	
	

3.4.1	Testing	to	
inform	evaluation	
	
	
	
3.4.2	Success	of	the	
solution	
	
	
3.4.3	Describe	the	
final	product	
	
	
3.4.4	Maintenance	
and	development	

	
(a)	Provide	annotated	evidence	of	testing	the	solution	
of	robustness	at	the	end	of	the	development	process.	
(b)	Provide	annotated	evidence	of	usability	testing	
(user	feedback).	
	
(a)	Use	the	test	evidence	from	the	development	and	
post	development	process	to	evaluate	the	solution	
against	the	success	criteria	from	the	analysis.	
	
(a)	Provide	annotated	evidence	of	the	usability	
features	from	the	design,	commenting	on	their	
effectiveness.	
	
(a)	Discuss	the	maintainability	of	the	solution.		
(b)	Discuss	potential	further	development	of	the	
solution.	

	
• Evaluate	their	project’s	solution	to	determine	

its	success.	
	

• Critically	discuss	the	maintainability	of	the	
solution	and	further	development.	
	
	

	
	
	
	
	

	
	

	
	

	

• Individual	
presentation		

• Case	Studies	
• Project		
• Class	Discussions	
• Research	
• Past	project	

samples	
	
	
	
	
	
	

	
	
	

Summer	1		 Revision	
External	Exams	

	 	
	
	

• Past	paper	questions	
• Discussions	
• One-to-one	tutoring	

	

